数学演習 I 2 0 0 6 年 4 月 2 1 日実施

1060301034 山田良太 理学部情報数理科学科 1 回生

http://www.geocities.jp/ryota_yama_2006/study/study.html 平成 18 年 5 月 9 日

0.1

- 1. (a) すべての A の要素 x について $x \le a$ が成立すること かつ
 - (b) すべての A の要素 x について $x \le b$ が成立すれば $a \le b$ が成立すること
- 2. (a) 全ての A の要素 x について $a \le x$ が成立すること
 - (b) 集合 A の下界が存在すること。
 - (c) a は A の要素で、かつ A の上界であること。
 - (d) a が A の下界全体の集合の最小数である。

0.2

1. $A = \{x \in \mathbb{R} | x^2 < 4\} = \{x \in \mathbb{R} | -2 < x < 2\}$ より全ての $a \in A$ に対して -2 < a < 2 ゆえに $a \le 2$ が成立する

ゆえに、2 は A の上界である。 QED

- 2. $A = = \{x \in \mathbb{R} | -2 < x < 2\}$ より $2 \notin A$ である。ゆえに 2 は A の最大数ではない。 OED
- 3. $A = \{x \in \mathbb{R} | -2 < x < 2\}$ より
- 4. まず 1. より 2 は *A* の上界である。

更に A の上界の成す集合を B とすると、すべての $b \in B$ に対して $b \le 2$ が成立する。

ゆえに2はAの上限である。 *QED*

0.3

- 1. ア)n=1 のとき、 $c_1 \le 1$ は明らか イ)n=k のとき、 $c_k \le 1$ を仮定する。 n=k+1 のとき、 $c_{k+1}=\frac{1+c_k^2}{2} \le \frac{1+1}{2}=1$ よって n=k の下で n=k+1 の時も成立する。 ア)イ)より数学的帰納法により全ての n に対して $c_n \le 1$ である。
- 2. ア)n=1 のとき $c_2-c_1=\frac{1+c_1^2}{2}-c_1=\frac{1}{2}-\frac{1}{2}+\frac{1}{2}c_1^2>0$ より $c_1< c_2$ である。

3. イ)
$$n \ge 2$$
 のとき、
$$c_{n+1} - c_n = \frac{1 + c_n^2}{2} - c_n = \frac{1}{2}(c_n - 1)^2 > 0$$
より $n \ge 2$ のとき、 c_n は単調増加である。
$$\mathcal{P}) \ \mathcal{T}) \ \mathcal{S}$$
 よりり、すべての n について c_n は単調増加である。 QED

- 4. 1.2. より数列 $\{c_n\}$ は上に有界で単調増加数列である。 よってこの数列 $\{c_n\}$ は収束する。
- 5. 4. よりこの数列 $\{c_n\}$ は収束するので、 $\lim_{x \to \infty} c_{n+1} = \lim_{x \to \infty} c_n = x$ と置ける。 よって $x = \frac{1+x^2}{2}$ これを解いて x = 1 である。よって $\lim_{x \to \infty} c_n = 1$ となる。 QED

0.4

誤り:この数列が収束するかどうかはまだ分からないので $\lim_{n\to\infty} d_n = d$ と置くことはできない。

0.5

- $1. \ arepsilon > 0$ に対して N を $rac{1}{arepsilon} < N$ となる自然数とする。 $n \geq N$ なら $|a_n a| = \left|rac{1}{n} 0 \right| = rac{1}{n} \leq rac{1}{N} < arepsilon$ よって $|a_n a| < arepsilon$ 故に $\lim_{n o \infty} a_n = 0$ QED
- $2. \ \varepsilon > 0$ に対して N を $\frac{1}{\varepsilon^2} < N$ となる自然数とする。 $n \ge N$ なら $|b_n b| = \left|\frac{1}{\sqrt{n}} 0\right| = \frac{1}{\sqrt{n}} \le \frac{1}{\sqrt{N}} < \varepsilon$ よって $|b_n b| < \varepsilon$ 故に $\lim_{n \to \infty} b_n = 0$ QED
- 3. $\varepsilon>0$ に対して N を $\frac{1}{N}<\varepsilon$ となる自然数とする。 $|\sin n|<1$ であるから $n\geq N$ なら $|c_n-c|=\left|\frac{\sin n}{n}-0\right|=\frac{|\sin n|}{n}\leq \frac{1}{n}\leq \frac{1}{N}<\varepsilon$ よって $|c_n-c|<\varepsilon$ 故に $\lim_{n\to\infty}c_n=0$ QED